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SUMMARY 
The different stages of bursting and evolution of the fluctuation field in a turbulent boundary layer are 
governed by mechanisms that may be identified as either predominantly linear, i.e. governed by linear 
interaction with the mean shear flow, or non-linear, i.e. with interaction between the fluctuation components 
also being important. Wave number-frequency spectra reveal the presence of damped wave modes that may 
be modelled from the Orr-Sommerfeld equation. Conditional sampled experimental data for streamwise 
velocity fluctuations in the wall layer obtained using the variable interval time averaging (VITA) method 
scale with the threshold level in a manner consistent with linearity. High-amplitude wall pressure peaks show 
an approximately linear relationship with the associated vertical velocity fluctuations. Non-linearity acts 
primarily in the near-wall region where the fluctuation velocity is relatively the highest. 

INTRODUCTION 

To predict directly from the Navier-Stokes equations even simple high-Reynolds-number 
turbulent flows, such as the boundary layer over a flat plate, is a task that continues to baffle the 
fluid mechanician. Because of the difficulties posed by the non-linearity of the problem and the 
complicated and poorly understood three-dimensional fluctuation field, in order to determine 
the mean properties of the turbulent flow, he is forced to resort to turbulence models in the form of 
semi-empirical relationships between the fluctuation field and the mean flow, or to seek some 
other approximate closure of the system of averaged equations. Direct numerical simulation has 
become possible in recent years with the advent of supercomputers, but the range of Reynolds 
numbers that can be covered with such simulations is quite limited and is likely to remain so in the 
foreseeable future. Therefore, although such simulations will enhance the understanding of the 
physics of turbulence, they are not ever likely to become a standard tool for the high-Reynolds- 
number situations encountered in engineering practice. 

The non-linearity of the governing equations is responsible for the chaotic behaviour of the 
turbulence as well as for the large range of scales that appear. From both a fundamental and 
applied point of view it is therefore important to try to sort out in what mechanisms the non- 
linearity plays a large and essential role. Those in which non-linearity is weak may then possibly 
be handled in a simplified manner based on the small-perturbation equations. 
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In the past several attempts have been made to apply linear models to boundary layer 
turbulence. Sternberg' considered the fluctuation field in the near-wall region to be driven by the 
pressure fluctuations produced by the turbulence in the outer flow. By considering the fluctuation 
field as perturbations on the mean shear flow, approximated as a parallel one, Landahl' and 
Bark3 formulated the fluctuation field in terms of a non-homogeneous Orr-Sommerfeld equation 
from which the wave properties of the turbulence could be studied. 

In more recent work Landah14- has demonstrated that a simple approximate linear inviscid 
model may reproduce quite well the sampled velocity signatures obtained in experiments with the 
use of the variable interval time averaged (VITA) technique. The recent experiments by Johansson 
et ~ l . , ~  in which both the wall pressure and the streamwise and vertical velocity components were 
measured simultaneously, showed that the pressure peak scaled linearly with the vertical velocity 
component and also that the peak occurred at the time when the vertical velocity-mean shear 
interaction could be expected to be at a maximum, in consistency with a linear governing 
mechanism. 

PARALLEL MEAN FLOW FORMULATION 

The role of non-linearity in the dynamics of boundary layer turbulence may be at least partially 
understood from theoretical models similar to those used in the analysis of shear flow instability. 
Hence one treats the fluctuating field as a small but finite perturbation on a parallel mean flow, 
U(y)6,,, by setting for the velocity Ui(xi, t)  and pressure P ( x , , t )  

where x 1  = x, x2 = y, x3 = z and Pis  the mean pressure. The assumption of a parallel mean flow is 
well justified since the turbulent eddies of interest have a length scale of the order of the boundary 
layer thickness over which the streamwise variation of the mean flow is small. Substitution into the 
Navier-Stokes equations then gives the following set of equations for the fluctuating components: 

Dui /Dt  + V U ' ~ ~ ,  = - p a p / a x i  + vv2ui + atij/axj, (2) 

aui/axi= 0, (3) 

where u = u 2 ,  U' = dU/dy, D/Dt  = a /& + Ud/ax, V 2  = a2/ax jax j ,  and where 

zi j= ( M i l l j )  - M i l l j ,  (4) 

in which ( ) denotes ensemble average, may be regarded as fluctuating Reynolds stresses. Here the 
set (2) has been written in such a form that the non-linear terms, incorporated in T ~ ~ ,  may be 
thought of as driving the fluctuations. This may be brought out more clearly by eliminating p from 
the set (2) with the use of (3), which yields' 

ITv%/Dt + u"aU/ax - vv4v = 4 ,  

where U" = d'v/dy' and 

4 = V' T2  .- d 2  Ti /dx idx2 ,  

with 

T,= atij/axj. (7) 
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Since the non-linear terms involve higher spatial derivatives of the fluctuating velocities than 
the linear ones, one would expect that non-linear effects would be comparatively more important 
for the smaller scales than for the larger ones. Because the eddies involved tend to have much 
larger horizontal than vertical dimensions, i.e. to be ‘fat’ one may expect the terms involving the 
highest y-derivatives to give the major contribution to q. Hence from (6) 

q x - (a”/ay*)[a(uu)/ax + a(uw)/az]. (8) 
Measurements of the instantaneous uu during bursting carried out by Kim et aL7 show that the 
Reynolds stresses are highly intermittent and large only in a thin layer near the wall. This is 
illustrated in Figure 1 taken from the paper by Bark.3 (In the figure is also included his analytical 
fit to the data used in his calculation of the wave number-frequency spectra.) Corresponding 
results for the instantaneous stress component uw are not available, but one would expect that it 
will be similarly concentrated near the wall. A conceptual model that emerges is thus one in which 
the fluctuating flow field is governed by linear interaction, with the mean flow outside this layer 
but driven by the turbulence created in a thin active non-linear wall layer. 

Y +  

Figure 1 .  The uu component. of the Reynolds stress tensor as a function of y +  during bursting. 0 Measurements, Kim ef 
a/.’ - Curve fit, Bark3 

WAVE PROPERTIES 

By application of a Fourier transform in x,z and t ,  
m 

i = ( 2 ~ ) - ~ / ~ S  { ~ o e x p [ - i ( a x + B z u , ) ] d x d z d t ,  
-4, 

one obtains the non-homogeneous Orr-Sommerfeld equation 

= cj/ia, 

where a caret denotes Fourier transform, 

Lo-,(;) = (U  - c)(C” - k2C) - U“G - (l/iaR)(dz/dy2 - k 2 ) 2 6 ,  

k 2  = t12 + p2,  c = w / a ,  

(9) 

and where a prime denotes differentiation with respect to y. 
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For q = 0 the Orr-Sommerfeld equation for the mean flow is recovered. Numerical eigenvalue 
calculations'. show that the boundary layer mean velocity distribution is highly stable to small 
disturbances; hence the non-linear driving stresses as represented by 4 are essential for 
maintaining the turbulent fluctuations. A formal solution of (8), assuming that the non-linear 
source term (i is known, may be constructed through expansion in terms of the eigenfunctions (6'") 
and eigenvalues c(") of the homogeneous Orr-Sommerfeld problem as follows:2 

m 

where 

w ( n )  = wy) + iwy) = ac("), where 4(") are the eigensolutions of the Orr-Sommerfeld problem and 
q!J@) their adjoints, and where 

In this, contributions that may arise from the continuous spectrum have been ignored. The major 
contribution may be expected to come from the least damped eigenmode, denoted by superscript 
0. The wave number-frequency spectrum Y,, of u will be proportional to lV*l2; hence 

Y," - 1 / 1 0  - 0(0)12  = 1/[(0 - ap)' + ( O y ) 2 ] ,  (15) 

which is the spectral representation of a damped resonant wave system. 
From u one may calculate the pressure and hence the other velocity components. As 

demonstrated below, for eddies of large horizontal dimensions compared with their thickness, the 
pressure is approximately linear in 6. Hence all the fluctuation components will vary with c in the 
same manner as 6 and thus have wave number-frequency spectra of the form (15). 

By fitting a curve of the form (15) to the measured spectra, one can determine experimental 
values for both propagation velocity and damping for the waves. This was done by Bark3 
employing the experimental data from the pipe flow experiments of Morrison et al.' In Figure 2, 
reproduced from Bark's paper, the complex phase velocity c = cR + ic, thus obtained is compared 
with that calculated from the Orr-Sommerfeld equation for the mean velocity distribution. The 
agreement is good for the propagation velocity (cR) but with the damping (- ac,), being the more 
sensitive quantity to the experimental fits of the spectrum and of U", somewhat underpredicted, 
although showing the correct trend with a. 

VITA-EDUCED VE,LOCITY SIGNATURES 

Conditional sampling techniques are often applied in experimental turbulence research in order to 
isolate characteristic and frequently appearing flow features ('coherent structures') for detailed 
study. The sampling condition, such as on threshold, velocity quadrant or short-time variance 
(variable interval time averaging, VITA), is used to establish the time of occurrence of an event, 
around which the sampling is then carried out. In this manner one may obtain an average time 
history of the event. What type of event one finds in this manner does of course depend on the 
sampling condition used. 
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Figure 2. Real and imaginary parts of the downstream phase velocity. 0, 0 Determined from experiments, Morrison et 
a1.’ - Orr-Sommerfeld computations, Bark3 

In the VITA technique the sampling is carried out when the short-time variance of a fluctuating 
quantity, such as u, exceeds the root mean square by a selected threshold factor k, i.e. 

var(u, T, t , )  > ku;ms, (16) 

where 

var(u, T, t)=(1/2T) [-+T* u’dt- ( (1/2T) S:I:udr)i (17) 

and t ,  is the time of occurrence of the event around which the fluctuating component studied is 
sampled and presented as function of the time z = t - t, relative to the detection of the event. In 
most applications to date the velocity component selected for the sampling has been u. Its variance 
tends to become large when the flow experiences a strong local acceleration or retardation. This 
will occur when an inclined intense shear layer passes the measurement point. The VITA 
technique therefore tends to single out such structures. 

The VITA-educed velocity signatures depends on both the threshold k and on the integration 
time T. As pointed out by Johansson and Alfredssoa,’ the time of integration serves as a filter 
which singles out structures of different duration, i.e. streamwise length scales. The sampled 
velocities for different k, when normalized by J(ku,2,,), are found to collapse well onto one curve; 
this is particularly so if accelerating and decelerating events are treated separately.’ As an example 
Figure 3 shows results obtained by Johansson and Alfredsson’ in the wall region of a turbulent 
channel flow. In this figure the variables are expressed in viscous wall units. 

The fact that the curves for different values of the threshold collapse so well onto a single curve is 
an indication that the process captured by the conditional sampling is a linear one. It follows from 
the sampling criterion (17) that the velocity amplitude range selected by a particular value of k is 
proportional to ,/(ku,2,,). The good collapse for different k indicates that non-linear effects are 
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Figure 3. VITA-educed u-velocity signatures normalized by J(ku&,) for different threshold values.--Experiments, 
Johansson and Alfredsson9 ---- Theory, Landah14 

comparatively small; if large, the signature of the sampled and normalized velocity would have 
depended strongly on the amplitude. 

For the theoretical analysis one applies conditional sampling to the equations of motion, which 
results in 

6(ui + mi, ) / ~ t  = - p - l  ap/axi + vv2iii + aij,/axj, 

6 / ~ t  = a / a t  -t (mIj + i i j ) a / a X j  

(18) 

(19) 

where a tilde denotes conditional average, 

and 

(20) ui = ii, + u;, .;. = (U.U.) - 6$'. ' J  J '  

a prime now denoting the non-coherent portion. By definition, the conditional average of the non- 
coherent fluctuation field u: is zero. 'The coherent velocity field iii satisfies continuity, as does ui. 

In (1 8) the coherent field may be regarded as driven by the local and instantaneous Reynolds 
stresses produced by the non-coherent motion. The flow that results will of course depend on the 
condition used to educe the motion. However, certain general conclusions may be drawn from this 
formulation without the specific knowledge of the sampling criterion employed. 

The time scale for an inviscid instability of a parallel flow is of the order ti = (dV/dy)- ', 
whereas the time scale of evolution of an eddy of streamwise length scale 1 ,  is the eddy convection 
time 

where Ve is the convection speed of the eddy. Typical values for eddies in the wall region are 
1: > 100, U +  M 10,where'+'denotesviscouswallunits.Hence,withdV+/dy+ = O(l),ti/t,<< 1. 
Since the time of creation of an eddy through a local instability is thus short compared with the 
time of evolution of the eddy, one could model the eddy development sequence approximately as a 
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shot noise process in which the local instability acts to set the initial v-velocity distribution which 
then evolves according to linear theory. 

In Figure 3 are also included results for the VITA-educed u-component obtained from an 
approximate treatment of the linearized and inviscid version of (18).4 In this, the effects of 
horizontal pressure gradients were neglected (see also below) and a simple model for the sampled 
Reynolds stresses due to the incoherent fluctuations was employed. Only the shape of the stresses 
need be assumed; the amplitude of the normalized and sampled velocity and the streamwise scale 
come out from the theory. 

The agreement between theory and experiment is seen to be fairly good, except for the early 
times for which the theoretical model gives a much too rapid onset. 

PRESSURE FLUCTUATIONS 

By taking the divergence of the momentum equation (2), one obtains the well known Poisson 
equation for the pressure 

v2p/p = - 2v, ur - a2 (u iuj ) /ax iaxj .  (22) 
A formal solution of this is easily written down using the standard Green’s function method. To 
assess the relative importance of the linear and non-linear terms, we apply a Fourier transform 
which gives 

if’- kZ{= -2iaU’u*-a2z^,, -~2z^33-2a~?13-2 i~z*;2 -2 i~z*;3 .  (23) 
Multiplication of both sides by exp( - ky) and integration from y = 0 (the wall) to y = 00 yields, 
after some integration by parts and application of the second momentum equation, the following 
expression for the pressure at the wall, iw: 

U’Ge-ky dy - &/k 

rm 
- J [(azzll  + p2?33 + 2a/E,,)/k + 2iaiI2 + 2iBiz3]e-k”dy. 

0 

All non-linear terms are collected on the second line. It is seen that they are all of one power higher 
in a, /? or k than the linear terms. In a first-order long-wave approximation applicable to flat 
eddies, the non-linear terms may therefore be neglected. 

That the relation between the fluctuating pressure and velocity field appears to be nearly linear 
is indeed the finding of Johansson et aL6 in their recent measurements of the wall pressures in 
turbulent boundary layers and spots. As shown in Figure 4, they found that the sampled wall 
pressures, using the VITA condition (16) on u as a trigger, scaled with the threshold level as J k ,  i.e. 
in the same manner as u. The results for the pressures shown in Figure 4 were aligned with u 
through a two-step iteration procedure so as to remove the jitter in the p-signal. The phasing of the 
p - ,  and u- and u-signals was also found to be consistent with a linear model, with interaction 
between v and the mean shear constituting the pressure source. 

A NON-LINEAR EJECTION MECHANISM 

Strong non-linear effects may be expected to arise in the wall region due to local instabilities or due 
to large distortion of the flow away from its mean. Because of the short time scales to be expected 
for such processes, they are likely to be highly intermittent and localized in space. An interesting 
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Figure 4. Aligned (two iterations) conditional averages ofp, and u at y +  = 15 for VITA detection with various threshold 
levels. Note that the u- and p-  averages here have been normalized with K''' times the respective RMS. value (from 

Johansson et aL6) 

approach therefore is to view the set (2H4) from the point of view of intermittency. A turbulent 
burst in the near-wall region may be regarded as an isolated event which is only weakly influenced 
by a previous one. Then its evolution may be treated approximately as an initial value problem 
with the initial conditions set, possibly, by a previous localized instability. To study this non-linear 
initial value problem we write (2) as 

D(Udli + ui)/Dt = -p-'ap/dxi + vV'ui + a( u u ) / d y ,  (25) 

(26) 

where D/Dt = a / a t  + (Udj, + uj)8/axj and with initial conditions 

u, u, w = uo, v,, wo at t == 0. 

A formal solution of (25), (26) may be written down in terms of the Lagrangian co-ordinates 
ti (ti = xi for t = 0) as follows:'o 

rt 

U + u = U ( v )  + uo( t i )+  J (-p-lap/ax + vVZu)Dtl + t a ( u u ) / d y ,  
0 

with the pressure obtained from 
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and the vertical co-ordinate from 

where 

A =  X ~ Z C  - X C Z ~  (33) 
and the integration is to be carried out at constant x,z. Since the partial derivatives xt = dx/d<, 
etc. can only be determined after the complete solution has been found, which in turn requires 
knowledge of the Eulerian co-ordinates xi, the solution is only useful in situations where the 
pressure gradient and the viscous stresses are small so that their effect on the fluid element position 
is small, as would be the case for flat eddies." 

When the induced horizontal stresses are neglected, one finds the following simple approximate 
solutions: 

The effects of non-linearity in this model become particularly accentuated for conditions for 
which A is nearly zero in eqn (32), which may happen at a finite time after the onset. Such a case is 
illustrated in Figure 5, taken from Reference 11, which shows the evolution of an initial 
disturbance in the form of two pairs of counter-rotating vortices. The flow pattern revealed by the 
calculated consecutive fluid marker positions shows a remarkable similarity to that found by Kim 
et aL7 for the ejection phase of the turbulent bursting sequence in their hydrogen bubble flow 
visualization experiments (reproduced in Figure 6). A closer examination of the theoretical model 
reveals that the high local vertical velocity results from local convergence of fluid elements in the 
horizontal planes forcing, through continuity, a large vertical velocity component (theoretically 
infinite in the simplified model). In the example shown the singularity occurs near t = 4 (the time is 
non-dimensionalized by the inverse of the wall shear rate), for which time the fluid elements have 
reached very large distances from the wall. The fact that such complicated non-linear behaviour 
can be simulated with such a simple model, assuming only conservation of mass and horizontal 
momentum, indicates that strong effects may arise from the cumulative non-linearities described 
by this model. 

CONCLUSIONS 

The presented analysis of experimental data on the basis of some simplified theoretical models 
indicates that the turbulent field may be described approximately as a linear system responding to 
the random forcing due to the non-linear bursting motion in a thin region near the wall involving 
predominantly small-scale motion. 

In view of the short time scales to be expected during the intermittent phases of the bursting 
motion, viscous effects are likely to be unimportant for the non-linear driving mechanisms in the 
wall layer. Hence much understanding might be gained from the use of the inviscid equations. It 
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Figure 5. Bubble wire simulation of40 marked particles originally at x =0-5, z = 0, shown at eight different times after the 
onset of an initial disturbance in the form of two counter-rotating streamwise vortices (after Landahl and Henningson”) 

Y 

Figure 6. Vi5 iualizat ion of a bursting event with the aid of hydrogen bubbles from a pulsed wire (from Kim et 01.’) 

has been speculated in the literature that the Euler equations may admit solutions that become 
singular at a finite time; the approximate treatment given above does indeed support such a 
possibility. 
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